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PROVABLY DIFFICULT COMBINATORIAL GAMES*

LARRY J. STOCKMEYER+® AND ASHOK K. CHANDRAt

Abstract. For a number of two-person combinatorial games, the problem of determining the outcome of
optimal play from a given starting position (that is, of determining which player, if either, has a forced win) is
shown to be complete in exponential time with respect to logspace-reducibility. As consequences of this
property, it is shown that (1) any algorithm which determines the outcome of optimal play for one of these
games must infinitely often use a number of steps which grows exponentially as a function of the size of the
starting position given as input; and (2) these games are “‘universal games’’ in the sense that, if G denotes one
of these games and R denotes any member of a large class of combinatorial games (including Chess, Go, and
many other games of popular or mathematical interest), then the problem of determining the outcome of R is
reducible in polynomial time to the problem of determining the outcome of G.
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1. Introduction. For many combinatorial games of perfect information (for
example, Chess, Go, Kayles, and Nim) it is known that there are algorithms which
determine whether or not the player moving first has a “forced win” from a given
starting position. We say that such an algorithm decides the game. For a game such as
Go (generalized to boards of arbitrary size) a position is essentially specified by a
placement of stones on a board together with an indication of whose turn it is; a position
in Nim is a sequence of nonnegative integers represented in, say, binary notation which
specifies the number of sticks in each heap. We are interested primarily in the running
times of decision algorithms where the time is measured as a function of the size of the
starting position given as input. For example, it would be reasonable to define the size of
a position in Go to be the number of squares on the board, and the size of a position in
Nim to be the sum of the lengths of the binary representations comprising the sequence
of heap sizes.

For both Go and Nim, the number of positions which could conceivably be reached
from a given position 7+ by one or more moves of the game grows roughly as an
exponential function of the size of 7. Therefore, Go and Nim can be decided in
exponential time by algorithms which list all positions reachable from the input 7 and
then determine the value of each listed position by the methods of classical game theory
[24, § 15]. An exponential running time, while prohibitive in practice for all but very
small initial positions, does provide a rough upper bound on the time that is sufficient to
decide many examples of games.

For certain games this exponential running time can be substantially improved.
The known analysis of Nim [3], [5], [11] yields a decision algorithm for Nim whose
running time is a polynomial of low degree. The applications of Grundy-Sprague theory
[11] and other clever analyses (see, for example, [5]) have produced nonobvious and
efficient decision algorithms for a number of games.

However, other games have resisted analysis. It is not known, for example, if there
is a decision algorithm for Go whose running time is bounded above by a polynomial in
the board size, and it is possible that no such algorithm exists. Recently it has been
proved that the decision problems for Go and Checkers are polynomial-space-hard
[10], [18]; this provides evidence (but, as yet, not proof) that these games cannot be
decided in polynomial time. The main purpose of this paper is to prove that the decision
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problems for certain simply-defined combinatorial games are complete in exponential
time with respect to efficient reducibility (cf. [1], [22]) and, therefore, that these games
require exponential time to decide, at least on some infinite sequence of starting
positions. Since we have not been able to prove this for existing games such as Go, we
have defined several games for the purpose of illustrating the proof methods.

In § 3 we consider games played on propositional formulas. In these games, a start-
ing position is a propositional formula (or formulas) together with an assignment of
truth values to the propositional variables in the formula(s). Two players alternate
moves. A player moves by changing the truth values of certain variables subject to the
rules of the particular game, and the winner is, for example, the player who first makes
the formula true. Some of these games have more appealing representations. The
following game of Peek is equivalent to one of our formula games and illustrates the
kinds of results that are contained herein. A starting position in Peek is a box containing
a finite number of horizontal plates which can be pushed in or pulled partially out; each
movable plate has exactly two positions, “in” or “out”, and we may assume that all
plates are initially “in”". There is also one immobile plate. Some of the movable plates
“belong” to player I and the rest “belong’ to player II. The plates have holes cut into
them at various places and the locations of all holes are known to both players; see Fig.
1. The two players alternate moves with I moving first. A player moves by either
passing, pulling one of his plates out, or by pushing one of his plates in. The game ends at
the point when a hole appears through the entire stack of plates, and the winner is the
player who made the last move which caused the hole to appear. Define the size of a
position to be the number of plates. We place no a priori bound on the number of plates,
but we assume that there is a fixed constant d such that the number of holes in each plate
is at most the multiple d of the number of plates. By encoding each starting position as a
string of symbols suitable as input to some formal machine model such as a Turing
machine, the set of encodings of starting positions from which player I has a forced win
is a set of strings which we denote W (Peek). For example, the encoding could contain,
for each plate, a list of pairs of positive integers represented in radix notation which
specifies the coordinates of all holes in that plate. The key result is that W{Peek) is
complete in exponential time with respect to logspace-reducibility. Briefly, this means

(a)

(b) @

FIG. 1. (a) A box with ten movable plates, eight “in" and two “‘out”. The top plate is immobile.
(b) A plate with holes.
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that (i) W(Peek) can be recognized in exponential time, and (ii) if A is any set of strings
which can be recognized in exponential time, and (ii) if A is any set of strings which can
be recognized in exponential time then A is logspace-reducible to W (Peek)—that is,
there is a function f such that w € A iff f(w)e W{(Peek) for all strings w, and f can be
computed by a Turing machine within logarithmic space (and, therefore, within
polynomial time).

There are two interesting consequences of the fact that W (Peek) is complete in
exponential time. First, we are able to derive an exponential lower bound on the time
required (infinitely often) to decide Peek. Precisely, there is a constant ¢ > 1, such that if
M is a deterministic Turing machine which recognizes W(Peek), then there are
infinitely many Peek positions 7 such that M runs for at least ¢***" steps when started
on the encoding of 7. It should be pointed out that we use Turing machines as our model
of algorithm purely for technical convenience in proofs, and that this exponential lower
bound (possibly with a different constant ¢ > 1) holds for more realistic models such as
random access register machines [1], [7]. This is true because there are sufficiently
efficient simulations of random access machines by Turing machines.

The second consequence is that Peek is a “‘universal game” in the sense that the
problem of deciding any reasonable game is logspace-reducible to the problem of
deciding Peek. Informally, a game is “‘reasonable” if (i) the number of positions
reachable from a given position 7 within an arbitrary number of moves is bounded
above by an exponential function of the size of m, and (ii) it is not onerously difficult to
recognize whether a move is allowed by the rules of the game. Many common games
such as Chess and Go generalized in any number of ways to arbitrarily large (possibly
multidimensional) boards are reasonable in this sense. The formal definition of
“reasonable” precedes the statement of Corollary 3.2.

Besides serving as examples of exponential-time-complete games, the formula
games of § 3 might be useful in showing that other games are complete in exponential
time, in much the same way that the Boolean satisfiability problem [6] was used to show
that certain problems are NP-complete [16], and the quantified Boolean formula
problem (21}, [22] was used to show that certain games are complete in polynomial
space [8], [20]. To illustrate this, in § 4 we define a type of blocking game played by
moving markers on a graph, prove that one of the formula games is logspace-reducible
to the blocking game, and conclude that the blocking game is complete in exponential
time.

It is instructive to view the results of this paper in the context of previous research
[8], [15], [20] concerning the computational complexity of deciding games. One can
identify three different types of games corresponding to three levels of complexity.
Given a game G and a position 7 of the game, let reach () be the number of positions
which can possibly be reached from 7 within an arbitrary number of moves, and let
reach of G be that function which maps each positive integer s to the maximum of
reach(n) taken over all positions 7 of size s. Games of the first type are those whose
reach is bounded above by a polynomial. For example, if a game is played on a graph by
moving a single marker from node to node, then the number of reachable positions is at
most the number of nodes in the graph. Assuming that the legal moves of the game can
be recognized in polynomial time, the straightforward decision algorithm described in
the second paragraph of this section shows that any game of the first type can be decided
in polynomial time. Jones and Laaser [15] describe a particular game of this type which
is complete in deterministic polynomial time. Games of the second type are those like
Hex and Dots-and-Boxes where players make permanent marks on a board. The
distinguishing feature of games of the second type is that if the game is played from a
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starting position 7, then the game is assured to end after a number of moves which is
bounded above by some polynomial in the size of 7. However, there is a game of the
second type which is not of the first type because its reach grows exponentially (even
though the number of positions visited during a particular line of play is at most
polynomial). By exhaustively examining all possible lines of play from a given starting
position, it can be seen that any game of the second type can be decided by an algorithm
which uses space (i.e., memory) bounded above by a polynomial in the size of the
starting position (assuming again that the legal moves can be recognized in polynomial
time). Even and Tarjan [8] and Schaefer [20] exhibit games of the second type which are
complete in polynomial space. It follows that these polynomial-space-complete games
can be decided in polynomial time if and only if any set recognizable in polynomial
space is recognizable in polynomial time; this is viewed as providing evidence that these
games cannot be decided in polynomial time. Games of the third type are those like
Chess and Go where players can move, place, and remove pieces on a board. Games of
the third type are those with exponentially bounded reach. There is a game of the third
type which is not of the second type because its play lasts an exponential number of
moves. Any game of the third type can be decided in exponential time by the
straightforward position-listing algorithm. The purpose of this paper is to exhibit games
of the third type which are complete in exponential time.

The relationship between the three types of games and their decision algorithms is
summarized in Fig. 2, where we define the space of a game to be the logarithm of its
reach (which measures, as a function of the size of 7, the number of bits which is
sufficient to assign a distinct binary string to each position reachable from 7). These are
but three instances of a general relationship between time (space) bounded games and
space (time) bounded algorithms which is formalized in [4], [17] and outlined in the next
section.

TYPE GAME ALGORITHM
1 LOGARITHMIC SPACE POLYNOMIAL TIME
2 POLYNOMIAL TIME POLYNOMIAL SPACE
3 LINEAR SPACE EXPONENTIAL TIME

F1G. 2. The relationship between resource bounds for games and algorithms.

2. Games, algorithms, and completeness. For a finite alphabet I, £* denotes the
set of words (i.e., finite strings of symbols) over £ including the empty word ¢;
E"=3*—{¢}. A language is a subset of £* for some finite . For a word w € 3*, |w|
denotes the length of w. N denotes the nonnegative integers, and R denotes the real
numbers. For a finite set S, card(S) denotes the cardinality of S.

It is convenient to adopt the following definition of game.

DEFINITION. A (two-person perfect-information) game is a triple (P,. P,, R)
where P; and P, are sets, PyNP,=,and R< P, x P,U P, X P,.

In other words, P, (P,) is the set of positions in which player I (II) has the initiative,
and R is the set of allowable moves—if (7, 7')€ R and € P, (7 € P,), then player I (II)
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can move from position # to position 7’ in one move. By convention, a player who is
unable to move is declared the loser.

DEFINITION. Let G = (Py, P,, R)be agame. Let W_,(G)= & and for integer{ = ()
let

W(G)=W...(G)U{re P|@7 € P)[(m, )¢ R and ='e W,_,(G)]}
U{m e P(Vn'e P))[(m, 7')e R implies 7' W,_(G)]}.
Define
W(G)y= U W,/(G).

iz0

W(G) is the set of positions from which player I has a “forced win”. In particular,
Wy(G) is the set of 7 € P, from which player Il cannot move, and W,(G) is the set of
positions from which I has a forced win in no more than i moves. For certain games G.
our objective is to establish bounds on the computational complexity of recognizing the
set W(G).

In measuring the computational complexity of sets, our model of computation is
the deterministic one-tape Turing machine [1], [13]. We first define a more general
device, the alternating Turing machine, which is a useful technical tool in the proofs of
our results. The definition of an alternating Turing machine is very similar to that of a
nondeterministic Turing machine (cf. [1], [13]) except that some subset of its states are
referred to as universal states and the rest as existential states. Alternating Turing
machines are discussed in more detail in [4], [17]. We state here a somewhat simplified
version of the definition which is sufficient for the purposes of this paper.

DEFINITION. A one-tape alternating Turing machine (ATM) is a seven-tuple
M=(Q,T, %, #, 6, qo, U) where:

Q 1s the set of states;

r is the tape alphabet;

p is the input alphabet, 3 <T;

# is the blank tape symbol, #e'=3;

S S(@XD)x(@xT—={#hx{L,R,S}
is the next-move relation;

qo is the initial state;

U is the set of universal states, U < Q;

Q- U s the set of existential states.

The tape is assumed to be one-way infinite to the right, and we assume that the head
never moves off the left end of the tape.

A configuration of M is a triple of the form (g, v, j) where g € Q is the current state,
ye(I'—={#})* denotes the nonblank portion of the tape, and j = 1 is an integer which
indicates that the jth tape cell from the left end is currently being scanned; let €y,
denote the set of all such configurations. For an input w € £°, the initial configuration on
w is (qo, w, 1). If M is in state q scanning the symbol u €T, and if (g, u), (q',u',d))eé,
then M can in one step enter state q’, print ' on the tape, and shift the head in direction
d (Left, Right, or Stationary). For configurations C and C’ we write C +,, C" iff C can
reach C'in one step as just described; - ¥,denotes the reflexive transitive closure of — At
The configuration (g, v, j) is a universal (existential) configuration if ¢ 1s a universal
(existential) state.

Several equivalent definitions of acceptance for ATM'’s are discussed in [4], [9],
[17]. The following definition was suggested by M. Fischer and R. Ladner [9].



156 LARRY J. STOCKMEYER AND ASHOK K. CHANDRA

DEFINITION. Let M be an ATM. A trace of M is a set Tr < ¥,y X N such that:

1) if (C k)eTr and C is a universal configuration, then (C’, k —1) € Tr for all C”

such that C ,,C’; and

2) if (C, k)e Tr and C is an existential configuration, then there exists a C’ such

that C+pC'and (C', k—1)eTr.
M accepts w e 7 iff there is a trace Tr of M and a k € N such that (g0, w, 1), k)eTr;in
this case, Tr is said to be an accepting trace for w.

Let L(M) denote that subset of 3" which M accepts.

Note. A configuration C is said to be halting if there is no C' such that C —,, C".
Universal halting configurations serve as ‘‘accepting configurations” since such
configurations can belong to any trace. Existential halting configurations serve as
“rejecting configurations” since such configurations belong to no trace. Thus, the
definition of ATM given above need not mention accepting and rejecting states
explicitly.

Let ¢, s € N. The trace Tr uses time at most t iff k = ¢ for all (C, k)e Tr. The trace Tr
uses space at most s iff j=s for all ((q, v, j), k)e Tr.

DEFINITION. Let F: N>R and let M be an ATM. M operates within time (space)
F(n)iff for each w € L(M ) there is a trace Tr of M such that Tris an accepting trace for
w and Tr uses time (space) at most F(jw}). Define

ATIME(F(n))(ASPACE(F(n)))
={L(M)|M is an ATM which operates within time (space) F(n)}.

A deterministic Turing machine (DTM) is an ATM M such that for any configura-
tion C of M there is at most one C’ such that C ,,C'. When restricted to DTM’s, the
above definitions of time and space bounded acceptance of languages are identical to
the usual definitions [1], [13]. (Although nondeterministic Turing machines play no role
in this paper, it might aid the reader’s intuition to note that one could define a
nondeterministic Turing machine to be an ATM with the restriction that every universal
configuration is halting.) Define

DTIME(F(n)) (DSPACE(F(n)))
={L(M)|M is a DTM which operates within time (space) F(n )}.
Also let

P-TIME= U DTIME(cn"), P-SPACE= U DSPACE(cn*),

k=1 c k=1

Z-TIME = U DTIME(c").
c=1
The connection between space-bounded ATM’s and time-bounded DTM’s is

embodied in the following result.
THEOREM 2.1 (Chandra, Kozen, Stockmeyer [4], [17)). Let F(n)=n +1.

ASPACE(F(n))= U DTIME(c"™).
cz1
To be completely precise, an ATM is defined in [4], [17] to have a separate input
tape, and Theorem 2.1 is proved for all F(n)=log n; the case F(n)=log n is implicit in
Jones and Laaser [15, Thm. 13]. In the case that F(n)=n + 1, the presence or absence
of an input tape is immaterial, so Theorem 2.1 follows trivially from [4], [17]. We are
interested primarily in the following corollary of Theorem 2.1.
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CoroLLARY 2.1. ASPACE(n+1)= &-TIME.

In § 3 we prove that the sets W(G) for certain games G are complete in &-TIME
by exploiting the natural connection between ATM’s and games. Briefly, the existential
(universal) configurations of the ATM correspond to positions from which player I
(player II) has the initiative to move, and the universal halting configurations cor-
respond to immediate losing positions for I1.

Remark. The papers [4], [17] also characterize time-bounded ATM’s in terms of
space-bounded DTM’s. In particular,

U ATIME(cn*)= ?-SPACE.
c,kzl
This equality embodies the connection between ?-SPACE and “polynomial-time
bounded games” (games of the second type in § 1) which is exploited by Even and
Tarjan [8] and Schaefer [20] in proving that certain games are complete in #-SPACE.

Finally we define the notion of a language being complete in a class of languages.
Let log n denote the base two logarithm for n =2, and log 0 = logl=1.LetXand Abe
finite alphabets. The function f: % > A" is logspace-computable (cf. [14), [15], [22]) i
there is a deterministic Turing machine with a separate two-way read-only input tape, a
read/write work tape, and a one-way output tape such that, when started with any word
w e X" on the input tape, the machine eventually halts with f(w) on the output tape
while having visited at most log |w| squares on the work tape. Let /: N - R. The function
fis length l(n) bounded iff |f(w) < (lw|) for all we T*.

Let AcS" and B € A™. A transforms to B within logspace via f(A =g Buiaf)iff f
is a logspace-computable function, f: "> A", such that we Ao f(w)e B for all
weX’. We remark that the class of logspace-computable functions is closed under
composition [14], [22], so that =, is a transitive relation on languages.

Let B be a language and let & be a class of languages. Then

F =B it A=S,,B forallAc¥

Furthermore, £ =,,; B via length order I(n) (I: N- R) provided that for each A e ¥
there is a function f and a constant b € N such that A =,., B via f and f is length b - I(n)
bounded.

The language B is log-complete in ¥ iff both Be ¥ and ¥ =, B.

3. Games on propositional formulas. In this section we describe six games which
are played on propositional formulas and prove that their sets of winning positions
are log-complete in €-TIME. By formula we mean a well-formed parenthesized
expression involving variable symbols (which are denoted in the text by (subscripted)
letters 7, u, v, x, y, z), the binary connectives A (conjunction), \/ (disjunction) and ®
(exclusive- or), the unary connective ~ (negation), and parentheses. We define the class
of formulas and simultaneously define V/(F), the set of variable symbols in F, and
size(F), the number of occurrences of variable symbols in F.

DEeFINITION. 1) If x denotes a variable symbol, then x is a formula, V(x) = {x},
and size(x) =1,

2) if F=(G @ H) where G and H are formulas and @ denotes a binary connec-
tive, then F is a formula, V(F)= V(G)U V(H), and size(F) = size(G ) +size(H);

3) if F=~H where H is a formula, then F is a formula, V(F)= V(H) and
size(F) = size(H ).

When writing formulas in the text, parentheses are deleted when not needed to
determine the precedence of operations. If X, - - -, X,,, denote disjoint sets of variable
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symbols, we let F(X, - - -, X,,.), H(X,, - -+, X.), etc., denote formulas containing only
variables in X,U---UX,,. For a set § of variable symbols, an S-assignment is a
function from S to {0, 1}, where 0 and 1 in this context denote Boolean values false and
true, respectively. A formula F defines, in the obvious way, a function mapping
V (F)-assignments to {0, 1}. A literal is either x or ~x where x denotes a variable
symbol. A formula is in conjunctive normal form (CNF) iff it is a conjunction of
disjunctions of literals. A formula is in disjunctive normal form (DNF) iff it is a
disjunction of conjunctions of literals. For positive integer k, let X DNF denote the set of
formulas in DNF which are of the form C; VV C, V - - -V C,, whereeach C; (1 =i=m)
is a conjunction of at most k literals; kCNF is defined dually.

We now describe games Gy = (Pxy, Py, Ri) for 1 = k =6. We prefer to describe the
move-relations R, informally, and in several cases we indicate the formal definition as
well; it should be obvious how to translate these descriptions into complete formal
definitions of the R, as subsets of pairs of positions. In these games, each position
contains a symbol 7 € {1, 2} which serves only to differentiate the positions in Py, from
those in Py,.

Gy: A position is a triple (7, F(X, Y, {t}), a) where r€{1, 2}, F is a formula in
4CNF whose variables have been partitioned into disjoint sets X, Y, and {t}, and a is a
V(F)-assignment. Player I moves by setting f to 1 (true) and setting the variables in X to
any values; player II moves by setting ¢ to 0 (false) and setting the variables in Y to any
values. A player loses if the formula F is false after his move.

G,: A position is a 4-tuple (r, -WIN(X, Y), I[I-WIN (X, Y), @) where 7€ {1, 2},
I-WIN and II-WIN are formulas in 12DNF, and « is an (X U Y)-assignment. Player [
(IT) moves by changing the value assigned to at most one variable in X (Y); either player
may pass since changing no variable amounts to a “pass”. Player I (II) wins if the
formula I-WIN (II-WIN) s true after some move of player I (II). More precisely, player
I can move from (1, I-WIN, II-WIN, a) to (2, I-WIN, II-WIN, ') in one move iff a'
differs from a in the assignment given to at most one variable in X and I[I-WIN is false
under the assignment a ; the moves of player II are defined symmetrically.

G;: A position is a 4-tuple (7, -'LOSE(X, Y), [I-LOSE(X, Y), a) where r¢
{1, 2}, I-LOSE and II-LOSE are formulas in 12DNF, and « is an (X U Y)-assignment.
Player I (I) moves by changing the value assigned to exactly one variable in X (Y)(i.e.,
passing is not allowed). Player I (II) loses if the formula I-LOSE (II-LOSE) is true after
some move of player I (II). More precisely, player I can move from (1, I-LOSE, II-
LOSE, a) to (2, I-LOSE, II-LOSE, ') iff @ and «' differ in the assignment to exactly
one variable in X and I-LOSE is false under the assignment a'.

G4: Apositionisatriple (r, F(X, Y), ) where Fis a formulain 13DNF and 7 and
a are as in game G,. Player I (II) moves by changing at most one variable in X (Y);
passing is allowed. The game ends at the point when F first becomes zrue and the winner
is the player who made the last move which caused F to become true. In other words, a
player has no legal move from a position in which F is true.

Gs: Apositionisatriple (1, F(X, Y), a)where F is aformula and = and « are asin
G. Player I (1) moves by changing at most one variable in X (Y); passing is allowed.
Player I wins if the formula F ever becomes true. In other words, player Il cannot move
from (2, F, «) to (1, F, a') if F is true under a, but I can always move from (1, F, a) to
(2, F, a') provided only that @ and ' differ in the assignment to at most one variable in
X.

Ge: Game G, is identical to Gs except that F is restricted to be in CNF.

Note that the game of Peek described in the Introduction is merely a restatement of
that game which is identical to G4 except that F can be any formula in DNF. Among
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these six games (G4 and G¢ stand out because they are played on one formula which is in
restricted form (i.e., DNF or CNF) and the artificial “‘turn variable” ¢ of G, is not
involved. The games G+, G,, and G are included since they arise as useful intermediate
steps toward the proofs that G, and G, are €-TIME-complete. The game G5, a minor
variant of G, is used in § 4.

In order to discuss the complexity of the sets W(G,), we must first encode the
positions of these games as words over some fixed finite alphabet. The details of this
encoding are for the most part immaterial, and we do not define the encoding formally.
We do assume, however, that variable symbols are encoded as words over a finite
alphabet by writing subscripts in binary notation; for example, x5 ¢ would be encoded as
x101¢110. This encoding can be extended in a natural way to give encodings of
formulas and assignments (cf. [1]. [6], [21]) and ultimately of positions. Since subscripts
are written in binary, we assume that there is a constant e > O such that, if || denotes the
length of the encoding of the formula F, then

3.1 |[Fl=e - size(F) - log (size(F));
and
(3.2) card(V(F))=e - |[F|/log (IF|);

and the length of the encoding of an S-assignment is at most e - card(S) - log (card(S)).
Fix some encoding with these properties, and let EW(G, ) denote the set of encodings of
positions in W(G,).

THEOREM 3.1. For 1=k =6, EW(G,) is log-complete in €-TIME.

Theorem 3.1 is immediate from Lemmas 3.1 and 3.2 below. The first lemma shows
that each EW(G,) belongs to €-TIME.

LEmMMA 3.1. There is a constant d > 1 such that

EW(G,)e DTIME(d"'**") for 1=k <6.
Proof. We consider the case k = 1; the proof in the other cases is virtually identical.
Let w be a given input which encodes the position 7 =(r, F, a) and let n = |w/|. Let
P={(r,F,B)|r€{1, 2} and B is a V(F)-assignment}.
By the convention (3.2) concerning encodings,

card(P)sp = [2 - 2°"/"8 "],

The DTM which accepts EW (G, ) first constructs the sets W;(G;)N P for 0 =i = p using
repeated application of the inductive definition of W, and then checks whether or not
€ W,(G1)N P. The time to carry out this procedure is clearly bounded above by some
polynomial in np, and the conclusion follows. [

LEMMA 3.2,

&-TIME 2,,, EW(G,) via length ordernlogn, for 1=k<5;
&-TIME =,,, EW(Gs) via length order n* log n.

Lemma 3.2 is proved below. Several remarks and corollaries precede the exposi-

tion of this proof.

Lemma 3.2 combines with the hierarchy theorem for deterministic time complex-
ity, proved by Hartmanis and Stearns [12], to yield an exponential lower bound on the
time required (infinitely often) to accept EW(G,).
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CorRoOLLARY 3.1. Let 1=k =5. There is a rational constant ¢ > 1, such that if a
deterministic Turing machine accepts EW(G,) and operates within time T(n), then
T(n)>c""®" for infinitely many n.

Proof. From [12] there is a language A such that A € €-TIME, and if a DTM
accepts A and operates within time T(n) then T(n)=2" for infinitely many n. By
Lemma 3.2, A =, EW(G,)via f where fislength bn log n bounded for some constant
b; say that b = 1. Choose ¢ >1 so that ¢® < 2. Assume for contradiction that there is a
DTM which accepts EW (G, ) within time T'(n) where T(n)=c"'*®" for almost all n.
Since f is computable in polynomial time, it follows that there is a DTM which accepts A
within time 7'(n) where

T/(n)é Cbn(logn)/log (bn log n) +p(n)

for almost all n, where p(n)is a polynomial. By our choice of ¢, T'(n)< 2" for almost all
n, contradicting one condition that A was chosen to satisfy. [

By a virtually identical proof one shows that EW(Gs) requires time ¢ "/'°&"""
infinitely often.

The following definition and corollary formalize the assertion made in the Intro-
duction that the formula games G, are “universal games”.

DEFINITION. The game G = (Py, P>, R) is reasonable if:

1) there is a finite alphabet I such that P;, P,<3"; and

2) for all w, '€ PyU Py, if (m, #')e R then || = |7']; and

3) for some symbol $ £ X, the language {m$='|(, n')e R} belongs to ?-TIME,

The condition 1) is a convenience to dispose of the issue of encoding positions as
words. The intent of 2) is that each instance of the game be played on a “board” of
fixed (but possibly arbitrary) size; for example, in generalized Go (cf. § 1), once a board
size has been chosen the players are not permitted to enlarge the board during the course
of play. The condition 3) ensures that the legal moves can be recognized in polynomial
time.

COROLLARY 3.2. If the game G is reasonable, then

W(G) S0y EW(Gi) for 1=k =6.

Proof. By the definition of reasonable it is easy to see that W(G)e €-TIME using
the method described in the proof of Lemma 3.1. Now the conclusion is immediate from
Lemma3.2. 0O

Our aim in this section is simply to illustrate the kinds of games on formulas which
are complete in &-TIME rather than to give a full analysis of the various combinations
of rules, CNF versus DNF formulas, etc. Two points are worth mention, however. First,
the games G, remain complete in €-TIME if formulas are not restricted to CNF or
DNF, or if passing is disallowed, or both. If arbitrary formulas appear in positions of
these games, the winning positions can still be accepted within time d™/'°®" as the proof
of Lemma 3.1 demonstrates. If passing is disallowed, we can give each player an
additional variable upon which the formulas do not depend. Secondly, the ‘‘turn
variable” ¢ appears to be essential to the €-TIME-completeness of games like G,
where a player can change the assignment to all of his variables in one move. For
example, if we define the game G like G4 except that player I (II) can change the
assignment of the entire set X (Y') in one move, then a position (1, F(X, Y), a) belongs
to W(G,)ift F is false under a and (3X)[F'(X)] where F'(X) is obtained from
F(X, Y) by setting the variables in Y according to the assignment «. This problem is
trivial for DNF formulas and log-complete in NP [6], [1] for CNF or arbitrary formulas.
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If player IT has the first move, a position (2, F(X, Y), «) belongs to W(G})iff cither F is
true under « or

(VY)[~F"(Y)and 3X)[F(X, Y)]]

where F”(Y) is obtained from F by setting X according to a. This problem is
log-complete in co-NP for DNF formulas and log-complete in I15[21] for CNF or
arbitrary formulas.

The remainder of § 3 is devoted to the proof of Lemma 3.2. In this proof it is
technically convenient to deal with ATM’s of a special type described next. A standard
linear ATM is an ATM M =(Q, T, X, #, 6, qo, U) with the properties that: (i) for all
w e X7, when started on input w, M can reach no configuration in which tape cell |w|+2
is being scanned (formally, there do not exist ge Q and yeI* such that
(90, w, 1) =31 (q, v, {w|+2)); (ii) the initial state g, is existential; and (iii)if C and C’ are
configurations of M with C +—,,C’, then C is existential if and only if C' is universal.
Because of the following lemma, we can restrict attention to standard linear ATM’s in
the sequel.

LEMMA 3.3. &€-TIME ={L(M)|M is a standard linear ATM}.

Proof. In light of Corollary 2.1 it suffices to observe that if A is accepted by an
ATM M which operates within space n+1, then M can be modified to satisfy the
necessary constraints (i), (i) and (iii), and still accept A. The constraint (i) can be met by
modifying M so that it enters a halting existential (i.e., rejecting) configuration
whenever the original M would attempt to shift the head to cell |w|+ 2. Now (ii) and (iii)
can be met by introducing new states. Say, if ((p, u), (g, u’, d))€ 6 where both p and q
are existential states, then remove this element from & and introduce a new universal
state p’ such that both ((p, u), (p', u’, Stationary)) and ((p', u’), (g, u', d)) belong to
6. 0

With each standard linear ATM M we associate a game Gpy = (Pas1, Pra, Ray) as
follows: Pus; (Pag2) is the set of existential (universal) configurations of M, and R, is the
next-move relation —p.

LEMMA 3.4, Let M be a standard linear ATM and let Gy be the game associated
with M.

LM)={w ez+|(¢Io, w, 1)e W(Gum )}

Proof. The proof follows easily from the definitions of W(Gy,) and of acceptance
for ATM’s, together with the conventions concerning standard linear ATM’s. On the
one hand, if Tr is a trace of M then one proves by induction on i that

{C(C, i)eTr}c Wi(Ga) forallieN.
On the other hand, it also follows from definitions that

{((C,i)|ieNand C € Wi(Gar)}

isatraceof M. O

Lemmas 3.3 and 3.4 provide the necessary link between €-TIME and games.
Note, in particular, the similarity between Gi, and G,. The proof that &-
TIME =, EW(G),) follows easily from known methods of expressing a Turing
machine’s next-move relation -, as a propositional formula [1], [6], [21]. We next
formalize this method.

First, we need a convention for representing a configuration by an assignment to a
set of Boolean variables. Let M be a standard linear ATM with states Q and tape
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alphabet I. With each configuration C=(q, y,v," - v, j) where l=j=!+1 and
v € I'={#} for all i, we associate the word

o(Cy=vy1y2" - Yi-1qYiYj+1 " V.

de
Let s =s(M) = [log (card(Q UT))]. Fix a one-to-one map has: (QUIN-{0, 1} such
that sipr (#) = 0° and extend has to a map from (Q U T)* to {0, 1}* in the obvious way. Let
U={uy, -, u,}beasetof variable symbols where p Z s - (I +1). The U-assignment «
represents C iff

a(upa(uz): -+ a(Usgeny) = hp(w(C)),

and a(#;) =0 for s(I +1)<i =p. It is important to note that, once M and h,, have been
fixed, each U-assignment represents at most one configuration.

LEMMA 3.5. Let M be a standard linear ATM. For each w € 3™ there is a formula
NEXTu,w (U, V) involving the variables U = {uy, - - -, upt and V ={vy,- -+, v,} where
p =s(M)- (w|+2) with the following properties. If ay, is a U-assignment and av is a
V-assignment such that ay, represents a configuration C such that (go, w, )% C, then
NEXTw,w is true under ay and av iff ay represents a configuration C' such that C — mC'.
Moreover,

size(NEXT s, ) = car|w|

for some constant car depending only on M, and the function which maps w to the encoding
of NEXThy,,, is logspace-computable.

The proof of Lemma 3.5 is not difficult, and the details (in a slightly different
context) can be found in [21, Lemma 6.3]. Briefly, the formula NEXT .., is a con-
junction of |w| subformulas; the ith subformula checks that the ith, @i+ th, (i +2)th
symbols of h "'(ay ) and h “!(ay)are consistent with a legal move of M. This can be done
in such a way that the size of each subformula is a constant depending only on M.

The next lemma permits us in certain cases to replace arbitrary formulas by
formulas in 3CNF while incurring only a constant factor dilation in formula size. The
proof, which is not repeated here, is based on a method of Tseitin [23], (cf. [2], [21]) for
converting an arbitrary formula to a formula in 3CNF while preserving satisfiability.

LEMMA 3.6. There is a constant a, such that for any formula F(S), there is a formula
H(S, Z) in 3CNF where Z is a set of variables disjoint from S, such that

1) size(H)= a - size(F), and

2) for any S-assignment a, F(S) is true under a iff there exists a Z-assignment 3

such that H(S, Z) is true under the combined assignments o and .
Moreover, there is a logspace -computable function which maps each F to an H satisfying
1) and 2).

We have now collected the technical machinery to be used in the proof of Lemma
3.2.Ineach case 1 = k =6, given a standard linear ATM M and an input w, we describe
a position m,, such that M accepts w iff 7, € W(G,). We also note how the length of the
encoding of , depends on |w| (with M fixed). If g, g2: N>R, then we write
81= On(g2) to assert that there is a constant by, depending only on M such that
gi1(n)= by - g2(n) for all n 2 1. In each case it is not difficult to see that the function
mapping w to the encoding of m,, is logspace-computable (given that the functions
described in Lemmas 3.5 and 3.6 are logspace-computable) and we let the reader
convince himself that these functions are indeed logspace-computable.
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Proof of Lemma 3.2.

1. Let M be a standard linear ATM, let w be an input, and let n = |w|. Let p. U, V,
and NEXTy, . (U, V) be as in Lemma 3.5 for this M and w. Let NEXT(U, V, Z) be the
formula obtained by applying Lemma 3.6 with § = U U V and F = NEXTy,... Recall
that NEXT (U, V, Z) is in 3CNF and its size is Ops(n). Say that Z = {z1," . 2k

Now we describe a formula Fy(X,, Yy, {t}) where X;={x,, - -,x.}. Y, =
{y1,* "+, ym}, and m = p+ k. Let MOVE (Y}, X,) denote the formula NEXT(U. V, Z)
after substituting y, for w, x; for v; (1=i=p), and x,,; for z; (1=sj=k). Let
MOVE| (X}, Y1) denote NEXT(U, V, Z) after substituting x; for u;, y; forv; (1=i=p)
and y,.; for z; (1=j=k). Let F} denote the formula

(~t VMOVE, (Y, X)) A (t VMOVE (X, Y})).

F} is easily transformed via the distributive laws to an equivalent formula F; in 4CNF
with size(Fy) = Oar(n). Let @, be an (X, U Y, )-assignment such that the restriction of a,
to{y1, -, y,} represents the initial configuration of M on input w; the assignment to
the other variables can be arbitrary. The position m,, is (1, F;, ;). Recalling Lemma
3.4, and noting that the legal moves of G, mimic the legal moves of Gy, it should be
obvious that m, € W(G,)iff M accepts w. For example, say that player I is about to
move, so that t must be set to 1. To avoid losing, player I must set the variables in X so
that MOVE, (Y1, X,) assumes the value 1. If C is the configuration of M currently
represented by the assignment to {y,, - -, y,} then, by Lemmas 3.5 and 3.6. [ must
choose the Xj-assignment so that the assignment to {x,,- -, Xp} represents a
configuration C’ with C -, C’. The reasoning is similar in the case that II is about to
move, except that ~r is 1 so MOVE{(X,, Y;) is enabled.

Since size(F;) = Ops(n), it follows from the convention (3.1) concerning encodings
that the function mapping w to the encoding of =, is length byn log n bounded for
some constant byr. Since M was arbitrary, we conclude that €-TIME =,,, EW{G)) via
length order n log n.

2. We introduce some new terminology which will be useful in this part of the
proof. Let G, =(P;, P2, R), and let L € P,UP,. A I-strategy (II-strategy) is a total
function o: PLU{L}>P,U{1l}(c: P,U{L}»P,U{L}) suchthat o(L)= L, and, for
all 7 € P, (7 € P,), if there exists a 7’ such that R (s, ') then R(a, (7)), and if there
does not exist a 7' such that R(#, 7’) then o(7) = L. For a position 7, € Py, a I-strategy
o1 and a Il-strategy o, define play (s, 01,0,) to be the infinite sequence
my, T, W3, - Where 71 =0 (m:) for i odd and 7., = o2(m;) for i even. We say that
play(mi, o1, 02) ends if ; = L for some i, and in this case we let last(#,, o1, o2) denote
that position #; # L with largest subscript j. For games of perfect information, there is
no loss of generality in assuming that players choose their moves by a “‘strategy’ as just
defined; for example, it is not difficult to see that, for any game G, the inductive
definition of W(G) yields an optimal I-strategy and an optimal II-strategy for G.

Let M be a standard linear ATM and let w be an input. We construct a pair of
formulas I-WIN(X3, Y,) and II-WIN(X,, Y3) and an (X, U Y,)-assignment a, such
that the position 7, = (1, I-WIN, II-WIN, a,) has the following properties (3.3) and
(3.4). If H(X,, Y,)is a formula, 7 = (7, [-WIN, II-WIN, «) is a position, and b € {0, 1},
we say that 7 satisfies H = b iff H assumes the value b under the assignment a.

(3.3) If M accepts w then there is a I-strategy oy, such that for all II-strategies o,:
(a) play(mw, 01,02) ends with last(sm,, o, 020 P, (e, 1 wins), and
last(m,, oy, 0;) satisfies [-WIN =1 and [I-WIN = 0; and
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(b) if player II passes on some move, then I next moves to a position which
satisfies -WIN =1 and II-WIN = 0.

(3.4) If M does not accept w then there is a II-strategy o, such that for all I-strategies
o
(a) if play(m,, o1, 0;) ends then last(m,, oy, 02)e Py (i.e., II wins), and
last(w,, 01, 0;) satisfies [-WIN = 0 and II-WIN = 1; and
(b) if player I passes on some move, then II next moves to a position which
satisfies I-WIN =0 and II-WIN = 1.

In particular, (3.3)(a) and (3.4)(a) imply that M accepts w iff =, € W(G,). The
properties (3.3)and (3.4) will be useful in proving cases k = 4, 5 of Lemma 3.2 where we
construct formulas using I-WIN and II-WIN as subformulas. We there use the fact that
the game never ends with both I-WIN = 1 and II-WIN = 1, and that if one player passes
then the other player wins immediately on the next move.

Let m be as in part 1 for this M and w. I-WIN and II-WIN contain variables
X,={x;;} and Y,={y,;} where 1=i=2m+2 and j=1,2. The sets of variables
X.={xi1|1=i=m} and Y, ={y,;|m+2=i=2m+1} play the roles of X, and Y,
respectively, in the previous part. However, since the rules of G, allow only one
variable to be changed in one move, we must constrain the play so that, for example,
while I is changing variables in X, player II can only change variables not belonging to
Y.. Similar to the proofs in [8], [20], we describe a legitimate play such that if both
players play legitimately then it is obvious that (3.3) and (3.4) hold, and a player who
departs from legitimate play loses after the next move of the other player. When we say
that a player plays a variable x we mean that the player changes the truth value of x.
Legitimate play is described as follows:

i<1;

loop: I plays exactly one of x;; or x;3;
II plays exactly one of y;; or y;»;
i< ({fi<2m+2theni+1else 1),
go to loop.

If we assume legitimate play, then as play progresses from i = 1 to i = m, plaver I can
assign any values to variables in X_ ; then as play progressesfromi=m +2toi=2m +1,
player II can assign any values to variables in Y,; and so on.

We next describe formulas I-ILL and II-ILL which punish players I and II,
respectively, for illegitimate play. We use the symbols a;, b;, a/, and b} to denote certain
subformulas of I-ILL and II-ILL. For 1 =i =2m +2 define

a; = xi,1®xi.2a
bi=yi.1®yia

If we choose the initial assignment so that the a; and b; are all 0 initially, then during
legitimate play we always have a;a; - * - dam+2 and d1b3 * + * Bz in 0¥1% U 1*0*. The
formulas a; and b} detect the boundaries between the blocks of 0’s and 1's.

!

a1 @a; if2=i=2m+2,
a; =

~(Arm+2Day) ifi=1.
The b; are defined similarly in terms of the b,. If we assume legitimate play then: just

before a move of I there isa j suchthata; =b; =1anda; =b; =0foralli #j: and just
before a move of II there is a j such that aj,; =b] =1 and a;,; =b] =0 for all i #].
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(Here and subsequently, subscripts are evaluated modulo 2m +2 to lie in the range
from 1 to 2m +2.) Define
I-ILL = \/ 2((01" Aain)V(ai Abisa A ~bi-r)),

1=i=2m+

I-LL= V. (GiAbL) V(6] Aai A~ai)),
1=is2m+
Note that during legitimate play, both I-ILL and II-ILL remain 0. In addition, these
formulas satisfy the following properties.

(3.5) Suppose that both players have played legitimately to a position where II is
about to move. Then:
(a) player II cannot in one move reach a position which satisfies I-ILL = 1; and
(b) any illegitimate nonpassing move of player II reaches a position which
satisfies [-ILI.=0 and II-ILL =1; and
(c) if IT passes, then I can in one move reach a position which satisfies [-ILL =0
and II-ILL = 1.

To verify (3.5), consult Fig. 3 which depicts a typical situation where II is about to move;
in this example, a;,, = b; = 1. First note that in order to reach a position which satisfies
I-ILL = 1, the move must change both b; to 0 and b;,, to 1; this is impossible in one
move, so (a)is true. If the next move of player II changes b;, then this move is legitimate.
If II changes b;_; then the term (b;-; A aj+1 A ~aj-1) of II-ILL becomes 1. If II
changes b; with [ #j and [ # j — 1, then the term (b; A b}41) of II-ILL becomes 1. If IT
passes, then I changes a;.; from 1 to 0 on the next move, so that the ..im
(b; A\ aji2 \ ~aj)of II-ILL becomes 1. In a completely analogous fashion, one verifies
the symmetric version of (3.5) where the players I and II are interchanged and the
formulas I-JLL and II-ILL are interchanged.

foi} ¢+. 0 0 0 0 O 1 1 I 1
{6y} +«. 0O 0O O O 1 b ¥ 1 |
{a'i} . 000001 000 ...
{yy ... 000 0O I 00 0O
T
j

FI1G. 3. A typical situation in G, when player 11 is about to move.

Now let MOVE,(Y, X.,) and MOVE5X, Y.) denote the formulas
MOVE, (Y, X;) and MOVE|(X}, Y;) of part 1, after substituting x;; for x; and
VYm+i+1,1 for y; (1 =i =m) in both. The formulas MOVE, and MOVE) check that
configurations are chosen correctly; these formulas are enabled only at the proper times
during play. Let

I-WIN' = (II-ILL V/ (@2m+2 A b2m+1 A ~MOVE3(X,, Y.))),

I-WIN' = (I-ILL V (@+1 A b1 A ~MOVE, (Y, X0))).
These two formulas can be transformed to equivalent formulas I-WIN and II-WIN in
12DNF with size(I-WIN) = size(II-WIN) = O, (n). For example, the terms (a; A ai+1)
and (a; A bi.1 A\ ~bi-1) of I-ILL are formulas which involve at most twelve variables

(after the abbreviations a; and b; have been replaced by their definitions). Each term is,
therefore, equivalent to a formula in 12DNF, so I-ILL is in 12DNF. Also, ~MOVE,
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and ~MOVE} are equivalent to formulas in 3DNF by DeMorgan’s laws. Let a5 be an
(X2 U Y;)-assignment such that the assignment to Y, represents the initial configuration
on input w, and a; = b, =0 for all .

The verification of (3.3) and (3.4) is a combination of (3.5) (and its symmetric
version) with the fact that legitimate play mimics Ga,. Say that M accepts w. Player I's
strategy is to play legitimately and play a *‘side game” of G, to determine, each time
play progresses from / = 1 to i = m, which configuration to represent by X. If II plays
legitimately, then just as in part 1, eventually the game will reach a position which
satisfies a2m4+2 = b3ms1 = 1 and MOVES(X,, Y.)=0. Therefore, we need only consider
the case that II makes an illegitimate move. If IIs first illegitimate move is a pass, then
by (3.5) (c), player I can next move to a position (2, I-WIN, II-WIN, «) which satisfies
II-ILL =1 and I-ILL = 0. Since I has been playing legitimately and II passed, we also
have that a,,.; and b,,., are not both 1 under a, so the position satisfies I-WIN = 1 and
II-WIN = 0. Say then that IIs first illegitimate move is a nonpassing move from position
m to w'. By (3.5) (b), the position 7' satisfies II-ILL = 1 (and, therefore, I-WIN = 1) and
I-ILL = 0. We must check that 7' satisfies

(@ms1 A\ bmsr A ~MOVE,(Y,, X.))=0.

If 7 satisfies a,,.,; =0 we are done. If 7 satisfies a,.+1 = 1 then, since both players have
been playing legitimately up to =, 7 satisfies b,,,, = 0. Since I has chosen the current
assignment to X, using a winning strategy for Gy, 7 satisfies ~MOVE, = 0. Since the
formula b,,.; contains no variable in Y., we conclude that either 7' satisfies by =0o0r
7' satisfies ~MOVE,(Y,, X,)=0. This completes the verification of (3.3). The
verification of (3.4) is completely analogous, using the symmetric version of (3.5) (i.e.,
interchanging I and II), and is left to the reader.

Having noted above that the sizes of I-WIN and II-WIN are Oy, (n), it follows that
&-TIME =,,, W(G,) via length order n log n.

3. Define

I-LOSE' = (I-ILL V (a},; A ~MOVE,(Y,, X.))),
I-LOSE' = (II-ILL V/ (b5+2 A ~MOVES(X,, Y.))).

Asinpart 2, these formulas are equivalent to formulas I-LOSE and II-LOSE in 12DNF
of size On(n). It is easy to see that M accepts w iff (1, [-.LOSE, II-LOSE, a,)e WI(G,).
First recall that, by the rules of G, neither player can pass and player I (II) cannot move
to a position which satisfies [-LOSE = 1 (II-LOSE = 1). This forces both players to play
legitimately, so it should be obvious that this starting position has the property claimed.

4. Let I-WIN(X,, Y;)and II-WIN(X,, Y,)be the formulas described in part2. We
construct a formula Fy(X,, Y,) where

Xa=XoU{xy, x5, x5, x4, x5} and  Yi=Y:U{y1, ¥2, V3, Ya, Vst
Let
Foy = ((y1 VI-WIN)A(x2Vy3)) V (xs AxsA~ys3)
V (i VI-WIN)A(y2Vx3) V (yaAvs A~xs).
Since I-WIN and II-WIN are formulas in 12DNF of size Ops(n), F} is equivalent to a
formula Fy in 13DNF of size O (n). Let a4 be an assignment that assigns X, and Y as

in part 2 and assigns x; and y; to 0 for 1 =/=5. We claim that M accepts w iff
(1. Fy, as)e W(Ga).
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Say that M accepts w. We describe a winning strategy for player I. As long as 11
plays only variables in Y, I plays a side game of G, using the strategy of (3.3) to
determine his plays in X,. Before each of his moves, I switches strategy if one of the
following two conditions are met:

1) if Il has just played one of the y;, then I switches to one of the strategies 1a)-1d);

2) if I has a play (possibly a pass) which moves the side game of G, to a position

which satisfies I-WIN = 1 and II-WIN = 0, then I switches to one of 2a) or 2b).
Note that (3.3) ensures that either 1) or 2) will eventually occur. If 1) and 2) are met
simultaneously then 1) takes precedence.
In describing the strategies la)-1d) we can assume that none of the x; have been
played and that exactly one of the y; has been played. Moreover, the current position
satisfies [-WIN =0 and II-WIN =0 since condition 2) was not met before I's most
recent previous move.
1a) If II has just set y; to 1, then I sets x, to 1 and wins.
1b) If I has just set y, to 1, then I sets x; to 1 and wins.
Ic) IfIThasjustsetysto 1, then I views this as a pass by Il in the side game; by (3.3)
(b), I has a play in X, which sets [-WIN = 1, and [ wins by making this play.

1d) If IT has just set either y, or ysto 1, then I sets x5 to 1. Since I has been playing
the strategy (3.3) up to this point, II cannot reach a position which satisfies
II-WIN = 1 on his next move. Since also yi, x5, y3 and ~x5 are 0, I cannot set
F,to 1 in one move. Therefore, player I can set x; to 1 on his next move and
win.

In describing the strategies 2a) and 2b) we can assume that none of the x; or y, have
yet been played.

2a) If the current position satisfies I-WIN = 1, then I sets x, to 1 anc wins

2b) If the current position satisfies [-WIN = [I-WIN = 0, but I can reach a position

which satisfies I-WIN =1 on his next move, then I sets x, to 1. Since the
variables x; and y, for 1 =/ = 5 other than x4 are all 0, it is easy to check that II
cannot reach a position which satisfies F, =1 in one move. Now if IT does not
set y; to 1, then I sets x5 to 1 and wins. If I does set y; to 1, then I makes the
play in X, that sets -WIN =1,

This completes the proof that if M accepts w then (1, Fy, as)e W(G,). The proof
of the converse is symmetric utilizing the symmetry between (3.3) and (3.4) and the
symmetry in the definition of Fj.

5. Let the formulas I-WIN and II-WIN be as in part 2. Let Y, ={y'|y € Y,}. We
describe a formula F5(Xs, Ys) where X5 = X,U{xo} and Y5s= Y, U Y5 U{yo, y1}. Let
I-WIN; and II-WIN; be the formulas I-WIN and II-WIN, respectively, after substitut-
ing (y @y’) for all occurrences of y for each y € Y5. Let T denote a formula which is the
exclusive-or of the variables in Y3 U{y,}. In what follows, it is useful to imagine that T
is a “variable” and that I-WIN;s and II-WINjs contain variables in Y just as in part 2.
The effect is that in one move player 11 can either play one y € Y, while leaving T fixed,
or play T while leaving all y € Y’ fixed, or simultaneously play T and one y € Y. Let

Fs=(T ANI-WINs) V (=T A x0)) A ~II-WINs A (T V yo).

Note that size(Fs) = Ops(n). Let as be an assignment which assigns X, and Y, asin part
2,assigns xoto 0, yoto 1 and y; to 1, and assigns all y' € Y5 to 0: note that the “variable”
T assumes the value 1 under as. We claim that M accepts w iff (1, Fs, as)e W(Gs);
furthermore, if M accepts w then I has a winning strategy such that if II passes then I
wins immediately on his next move.
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Say that M accepts w. As long as II doesn’t play T or y,, | plays a side game of G,
using the strategy (3.3) to determine his plays in X,. Eventually the side game will reach
a position which satisfies I-WIN = 1 and II-WIN = 0, so this position satisfies Fs = 1 and
I'wins. If I1 either passes or plays yo, then I views this as a pass by I1 in the side game, and
I next moves to a position which satisfies I-WIN = 1 and II-WIN = 0. If II sets T to O
(possibly in parallel with a move in the side game), then I sets x, to 1 and wins.

Say now that M does not accept w. As long as I doesn’t play x,, I plays a side game
of G, using (3.4) to determine his playsin Y,. The “variable” T is left fixed at 1 unless II
sees that his next play in the side game reaches a position which satisfies II-WIN = 1. In
this case, II makes this play while simultaneously setting T to 0. Now I needs at least two
moves to reach a position which satisfies Fs = 1 since he must set x, to 1 and make some
play in X, which sets II-WIN to 0. Therefore, before I can win, II can set yotoOandl
cannot win thereafter. If I sets xo to 1 before the side game ends in II'’s favor, then I sets
Yo to 0. Since II has been playing the strategy (3.4) up to this point, I cannot win on his
next move, and II sets T to 0 on his next move. If I passes then II passes.

6. Let F5(Xs, Ys) be the formula just described in part 5. By invoking Lemma 3.6
with § = XU Y5 and F = F;, there is a formula H(Xs, Ys, Z)in 3CNF with size(H) =
O (n) such that, for all assignments to X5 and Y,

(3.6) Fs(Xs, Ys)=1 iff QZ)H(Xs, Ys,Z)=1].

Say that Z ={z,, - - -, z,}. Let H' denote the formula H after substituting (z, \/ z/) for
ziforl=i=k. Let

X6=X5U{Z,',Z,"|1§l'§k+l}, Y6=Y5U{ui,uf|1§i§k},

and
Fé:H,V(ZI/\'"/\Zk/\zk+l/\(u1\/"'vuk))
VEIA ANz Azt Ay Ve Vouk)).

By the distributive laws, Fg is equivalent to a formula F, in CNF with sxze(Fs)—
Oum(n?). Let ag be an assignment that assigns Xs and Y as in part 5, assigns z, and z/ to
O for all / and assigns u; and u; to 1 for all i We show that M accepts w iff
(1, Fs, as)e W(Gé).

Say that M accepts w. As long as I plays only variables in Ys, I determines his plays
in X5 by playing a side game of Gs starting on position (1, Fs, as) using the strategy
described in part 5. At some point, the side game will reach a position 7 = (1, Fs, a)
such that I can move to a position 7' = (2, Fs, @') where =’ satisfies Fs = 1. At the point
where such a 7 occurs, I begins a strategy we call the end strategy. By (3.6). there is a
Z-assignment { such that H assumes the value 1 under the combined assignments o’
and ¢. Let & ={i|{(z;)= 1}. To play the end strategy, I does not immediately make the
play in X5 which moves 7 to 7/, but rather I first sets z, to 1 for all i € & on his next
card(Z) moves. Each time [ sets some z; to 1, Il must respond by setting some u, to 0; for
otherwise I can set all the z; to 1 before II can set all the u; to 0, and I wins Gs. (We are
still assuming that II played only variables in Y up to the point where the side game
reached 7.) After I has set z; to 1 for all i € & and II has responded by setting some u; to
0, I makes the play in Xs which moves the side game from 7 to 7'; the new position
satisfies H = 1 and I wins. If II passes (before playing some u; or u!) then, as was noted
in part 5, the side game is at a position 7 as above (i.e., I can win Gs on his next move).
Now I plays the end strategy.
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If I1 plays some u; before I begins the end strategy, then I views this as a pass by II
in the side game, and I plays the end strategy. If II plays some u;, then again I views this
as a pass and plays the end strategy except that the variables z! for i € & are set to 1.

Say now that M does not accept w. Player 11 plays a side game of Gs to determine
his responses to plays of Iin X. If I plays some z; (z}), then II changes some u; (u})from
1 to O if possible, or II passes otherwise. If I passes then II passes.

This completes the proof of Lemma 3.2.

4. Games on graphs. In the previous section we have exhibited several games on
propositional formulas which are log-complete in €-TIME. It is possible that these
games will be useful as starting points for reductions to other games, in the same way
that the quantified Boolean formula “game” [21], [22] has been used to show that
#?-SPACE is reducible to certain games [8], [10], [18], [20]. Since =, is a transitive
relation, to show that &-TIME =,,, W(G) for some game G, it suffices to show that
EW(Gy) =1 W(G) where Gy is one of the formula games. The main purpose of this
section is to illustrate, for a particular game G on graphs, how a reduction
EW(G;) =10, W(G) can be performed.

Before presenting this example in detail, we remark that by combining Theorem
3.1 with Schaefer’s notion of a pseudoformula [19] it is easy to devise &-TIME-
complete games which are based on known NP-complete problems. For example, the
following game HAM is obtained by combining Gs with the NP-complete Hamiltonian
circuit problem for undirected graphs [16].

HAM: A position in HAM is a tuple (7, V, E, E|, E,, a1, a;) where 7€{1,2}, Visa
finite set (the vertices of the graph), E = {{u, v}|u, v € V, u # v} (the edges of
the graph), Ey, E;c E, E\NE, =, and a;: E; - {in, out}fori =1, 2. Player I
(IT) moves by either passing or changing the status of one edge in E; (E,) from
“in” to “out” or vice versa. Player I wins if, after some move of either player,
there is a Hamiltonian circuit in the graph (V, E) (that is, a circuit which
contains each vertex exactly once) such that all of the edges currently declared
“in’” belong to the circuit and none of the edges currently declared “out”
belong to the circuit.

For any of the standard methods of encoding graphs as strings of symbols, EW(HAM)
is log-complete in &TIME. By [19, Fact 3.1] it is immediate that
EW(Gs) =, EW(HAM), so Theorem 3.1 and the transitivity of =,,, imply that
&-TIME =,,, EW(HAM). Also, EW(HAM)e £-TIME by the method of Lemma 3.1.

We now describe another game, BLOCK, for which the reduction from W(Gy)to
W(BLOCK) is more involved. The portion of a position of BLOCK which remains
fixed throughout play of the game is referred to as a board.

A board is a tuple (V, E, v, Wy, W,) where:
V is a finite set;
Ec{{u,v}u,veV,u#v};

v: E->{1,2,3}; and

W, Woc V.

V and E should be thought of as the vertices and edges of an undirected graph.

A position of BLOCK is a tuple (r, B, M;, M) where:
Te{1, 2} signifies whose turn it is;

B=(V,E, v, W,, W,)is a board; and

M, M,V and M, NM,=.
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M, and M, represent the movable part of a position; M, (M) should be thought of as a
set of markers which belong to player I (II) and are placed on vertices of the board. A
player moves by choosing one of his markers and moving it to a new unoccupied vertex
by traversing edges of the graph subject to the restrictions that (i)all traversed edges are
given the same value by », and (ii) no traversed vertex is occupied by a marker of either
player. The players are not permitted to pass. The function » gives a “‘direction’" to each
edge; the restriction (i) corresponds, for example, to the situation in Chess that a queen
can move in any of four directions but cannot change direction during a single move.
Player I (II) wins by placing one of his markers on a vertex in W, (W,). Formally,
(1, B, My, M>) can reach (2, B, M}, M%) in one move iff M,=M5 M,NW,= &, and
there exist u;,---,u,eV and ce{l,2,3} such that Uy #uy, ueM,, M=
My —{u ) U{ue}, uig My UM, for 2<i=k, and {u, uiv1te E and v({u;, u;-}) = ¢ for
1 =i <k. The legal moves of player II are defined symmetrically.

To encode positions as words over a finite alphabet, associate each element ue V
with a distinct binary word w(u) of length roughly log (card(V)), and list the various
elements of a position in some natural way; for example, letting e = card(E), list
E={{u, v}, -+ {u v} as wu)$w()$ - $ow.)8w(v,). Let EW(BLOCK)
denote the set of encodings of positions in W(BLOCK).

THEOREM 4.1. EW(BLOCK) is log-complete in €-TIME.

Proof. By the algorithm of Lemma 3.1 and the method of encoding positions, one
finds that there is a constant d such that

EW(BLOCK)e DTIME(d"/'*%").
To show that £-TIME =,,, EW(BLOCK) it suffices to prove
4.1) EW(G,) s, EW(BLOCK).
Let
m=(7,I-LOSE(X, Y), [I-LOSE(X, Y), a)
be a given position of G3. We describe a position
7' =(1,(V, E, v, Wi, W)), My, M)

in BLOCK such that 7 € W(G,) iff #'e W(BLOCK).

Say that X ={x;|1=i=m}and Y ={y;|1=i=m,}. Let %, denote the literal ~X;
and let y; denote ~y.. For each variable x; and y; the graph (V, E) contains the subgraph
depicted in Figs. 4(a) and 4(b), respectively. In these figures, vertices are labeled by
subscripted lower case Roman letters. The value of each edge under » is indicated by
drawing the edge as either solid, dashed, or dotted. Vertices which belong to W, (W,)
are indicated by open (solid) stars. The markers of player I (IT) are shown as open (solid)
circles. The dashed edges in these figures connect these subgraphs to the remainder of
the graph, and these are the only such connections. The rest of the graph is constructed
in such a way that (i) neither y, nor y; (resp., x; nor %) is connected to a vertex in W,
(resp., W) by a path of dashed edges, and (ii) any attempt by either player to move a
marker from outside one of these subgraphs to a vertex x,, x,, y;, or y: results in an
immediate win on the next move for the other player.

Consider Fig. 4(a). The marker currently shown on vertex x; is termed the ith value
marker (of player I) and is free to move between x, and %;. The position of this marker is
associated with a truth value of the variable x, as follows: if the marker is on x. (X;), then
x; has value 0 (1). The markers on d,, and ¢y, are termed guard markers. If I moves his
ith value marker to a vertex other than x; or X;, then II wins on the next move by moving
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his guard marker to either a;; or 5,;, one of which must be unoccupied. However, if I1
moves his guard to either %, e;;, or fy,, then I wins immediately by moving his guard
marker from cy; to either e; or f;,. The terminology and behavior associated with Fig.
4(b) is analogous. Therefore, at each move player I (II) must either move his ith value
marker from x; to X; or vice versa (resp., from y, to y, or vice versa) for some i, or move
some marker other than a value marker or a guard marker.
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F1G. 4. Subgraphs which represent the truth value of x; and y,.

Write I.LOSE as Cy, V - - - V Cyx, and write I[I-LOSE as Cy; \/ - -+ V Cai, Where
each Cj; is a conjunction of literals. Another portion of the graph (V, E) is constructed
for each C;. For example, say that Cy; is (x3 A ys). Then the graph would contain the
subgraph shown in Fig. 5. (With the exception of x; and ys, each vertex label in Fig. 5
actually has two additional subscripts, 2 and j, which have been repressed for readabil-
ity.) This subgraph has two relevant properties. First, if it is player I’s turn to move and
both x; and ys are unoccupied (corresponding to an assignment for which x; A ys is
true) then I has a forced win. The strategy which achieves the win is termed the end
strategy. To play the end strategy, I first moves the marker from w to s,. Now Il is forced
to place a marker on ry, and the marker shown currently on v is the only one that can
reach r; in one move. Now I is forced to place a marker on u;, and he does this by
moving the marker from s; to u;. Now Il is forced to move his marker from r; to t;, L is
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forced to move from u, to s, and so on. Finally, I is able to move a marker from u- to z,
and I wins. Note that as soon as I moves the marker from w to s,, the moves of both
players are forced. This yields the second relevant property of this subgraph: if I moves
the marker from w to s, at a time when either x5 or ys is occupied, then II has a forced
win. For example, suppose that x; is occupied and I moves from w to s,. Then II moves
from v to r;. The only marker of player I which can reach u; in one move is the one
currently on x3. However, if I moves this marker from x;.to u;, then II moves his guard
marker from d3 to a;; and wins (see Fig. 4(a) where i = 3).
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F1G. 5. The subgraph which corresponds to the clause (x3 A ys) in 1I-LOSE.

It should be obvious how to generalize the graph of Fig. 5 for conjunctions with
more than two literals. For conjunctions Cy; in [-LOSE, the construction is similar
except that the markers on vertices v and w are interchanged and the vertices in W,
(W,) become vertices in W, (W)). The position 7’ consists of the subgraphs of Fig. 4(a)
and 4(b) for each variable together with the subgraph of Fig. 5 for each conjunction in
I-LOSE and II-LOSE. The initial placement. of value markers is specified by the
assignment «. Observe that there is a constant b such that

4.2) card(V)+card(E)=b - (size(I-LOSE) +size(II-LOSE)).

It is not difficult to see that me W(G,) iff #'e W(BLOCK). Suppose that me
W(Gs). Player 1 plays a side game of G starting on 7 to determine his movement of
value markers as long as II moves only value markers. At some point, plaver II must
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move the side game to a position (1, I-LOSE, II-LOSE, g)where II-LOSE = 1 under 8,
so (; =1 for some j. Now I can successfully play the end strategy on the subgraph
corresponding to ;. The only other possibility is that I moves a marker from w,, to
s11; (cf. Fig. 5), for some j, before II-LOSE = [ in the side game. But since I has been
playing a winning strategy in G, some literalin C,; is O (i.e., the vertex corresponding to
that literal is covered by a marker) Now II's moves are forced, and I wins as discussed
above. The argument that = ¢ W(G;) implies 7'¢ W(BLOCK) is symmetric. This
completes the proof of (4.1) and, therefore, that of Theorem 4.1. [

Moreover, from the proofs of Lemma 3.2 and (4.1), the inequality (4.2), and the
method of encoding positions of BLOCK, it can be seen that the following is true.

Cororrary 4.1. 1) &-TIME =, EW(BLOCK) via length order n log n.

2) There is a constant ¢ >0, such that if a DTM accepts EW (BLOCK) within time
T(n), then T(n)>c""*" for infinitely many n.
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