13.3 FAMILIES OF UNIVERSAL HASH FUNCTIONS

since Var[f(X;)] < E[(f(X;))?] < |. We therefore find Pr(|Y — f'l > ¢) < § when
m = 1/8¢* (In fact. one can prove that Var[f(X;)] < 1/4, giving a slightly better
bound; this is left as Exercise 13.4.)

Using pairwise independent samples requires more samples: ®(1/8¢?) instead of
the ®(In(1/8)/e") samples when they are independent. But recall from Section 13.1.3
that we can obtain up to 2" pairwise independent samples with just 2x uniform inde-
pendent bits. Hence, as long as 1/8¢? < 2". just 2n random bits suffice; this is much
less than the number required when using completely independent samples. Usually
and § are fixed constants independent of 1. and this type of estimation is quite efficient
in terms of both the number of random bits used and the computational cost.

13.3. Families of Universal Hash Functions

Up to this point. when studying hash functions we modeled them as being completely
random in the sense that. for any collection of items x|, x,, ..., x4, the hash values
h(xi),h(x2),...,h(x;) were considered uniform and independent over the range of
the hash function. This was the framework we used to analyze hashing as a balls-and-
bins problem in Chapter 5. The assumption of a completely random hash function
simplifies the analysis for a theoretical study of hashing. In practice, however, com-
pletely random hash functions are too expensive to compute and store, so the model
does not fully reflect reality.

Two approaches are commonly used to implement practical hash functions. In many
cases, heuristic or ad hoc functions designed to appear random are used. Although these
functions may work suitably for some applications, they generally do not have any as-
sociated provable guarantees. making their use potentially risky. Another approach is
to use hash functions for which there are some provable guarantees. We trade away the
strong statements one can make about completely random hash functions for weaker
statements with hash functions that are efficient to store and compute.

We consider one of the computationally simplest classes of hash functions that pro-
vide useful provable performance guarantees: universal families of hash functions.
These functions are widely used in practice.

Definition 13.2: Let U be a universe with |U| > n and let V. = {0.1..... n—1}. A
family of hash functions H from U to V is said to be k-universal if, for any elements
X1, X2, ..., X, and for a hash function h chosen uniformly at random from H. we have

I
Prih(x)) =hix) = =h(x) < ——.
n*—

A family of hash functions H from U to V is said to be strongly k-universal if, for any
elements x|, x5, ..., X, anv values vy.va..... vi €{0.1,....n =1}, and a hash function
h chosen uniformly at random from H. we have

|

Pr((h(x) = y1) N (h(x2) = ¥2) N0 (hix) = ¥)) = .

321

PAIRWISE INDEPENDENCE AND UNIVERSAL HASH FUNCTIONS

We will primarily be interested in 2-universal and strongly 2-universal families of hash
functions. When we choose a hash function from a family of 2-universal hash functions,
the probability that any two elements x| and x, have the same hash value is at most | /n.
In this respect, a hash function chosen from a 2-universal family acts like a random
hash function. It does not follow, however, that for 2-universal families the probability
of any three values x|, x5, and x3 having the same hash value is at most 1/n?, as would
be the case if the hash values of x|, x», and x3 were mutually independent.

When a family is strongly 2-universal and we choose a hash function from that fam-
ily. the values A (x|) and /(x,) are pairwise independent, since the probability that they
take on any specific pair of values is 1/n°. Because of this, hash functions chosen from
a strongly 2-universal family are also known as pairwise independent hash functions.
More generally, if a family is strongly k-universal and we choose a hash function from
that family, then the values #2(x|),h(x;),h(xy) are k-wise independent. Notice that
a strongly k-universal hash function is also k-universal.

To gain some insight into the behavior of universal families of hash functions, let us
revisit a problem we considered in the balls-and-bins framework of Chapter 5. We saw
in Section 5.2 that, when #n items are hashed into n bins by a completely random hash
function, the maximum load is ®(log n/loglog 1) with high probability. We now con-
sider what bounds can be obtained on the maximum load when # items are hashed into
n bins using a hash function chosen from a 2-universal family.

First, consider the more general case where we have m items labeled x|, x5, ..., x,,.
Forl <i < j < m,let X;; = 1if items x; and x; land in the same bin. Let X =
> i<i<j<m Xij be the total number of collisions between pairs of items. By the linear-
ity of expectations,

E[X]:E[

> X,~.,-:|: > E[X;)

I<i<j<m l<i<j<m

Since our hash function is chosen from a 2-universal family, it follows that

E(X,“}] = PI'(/I(.\',‘) = /7(Xj)) <

and hence

Bix) < (") <™ 13.1)

- < —. .
“\2/n 2n (
Markov’s inequality then yields

2 1
Pr(X > "L) <Pr(X > 2E[X]) < -.

n

2
If we now suppose that the maximum number of items in a bin is ¥, then the number
of collisions X must be at least (}). Therefore,

Y m? m? |
Pr > —) <PrlX>—) <,
2 n n 2

322

which implies that

13.3 FAMILIES OF UNIVERSAL HASH FUNCTIONS

Pr(Y > m,/2/n) < %

In particular, in the case where m = n, the maximum load is at most V21 with proba-
bility at least 1/2.

This result is much weaker than the one for perfectly random hash functions, but it
is extremely general in that it holds for any 2-universal family of hash functions. The

result will prove useful for designing perfect hash functions. as we describe in Sec-
tion 13.3.3.

13.3.1. Example: A 2-Universal Family of Hash Functions

Let the universe U be the set {0,1.2.....m — 1} and let the range of our hash func-
tionbe V = {0,1,2,....n — 1}, with i > n. Consider the family of hash functions
obtained by choosing a prime p > m. letting

h,p(x) = ((ax = b)ymod p)modn
and then taking the family
H=H{h,p|1<a<p—-1 0<b<p}.

Notice that ¢ cannot here take on the value 0.
Lemma 13.6: H is 2-universal.

Proof: We count the number of functions in H for which two distinct elements x; and
x> from U collide.
First we note that. for any x; # x>,

axy+ b # ax> + bmod p.

This follows because a.x; + b = ax> 4+ bmod p implies that a(x; — x,) = Omod p,
yet here both ¢ and (x| — x») are nonzero modulo p.

In fact, for every pair of values (u.v) such that u # v and 0 < u,v < p — 1, there
exists exactly one pair of values (a.b) for which ax; +b = umod p and ax, + b =
vmod p. This pair of equations has two unknowns, and its unique solution is given by:

v — i

a = mod p,
X7 — X

b =u—ax;modp.

Since there is exactly one hash function for each pair (a, b). it follows that there is ex-
actly one hash function in ‘H for which

ax;+b=umodp and ax,+ b =vmodp.

Therefore, in order to bound the probability that /2, ,(x;) = h, »(x2) when h,p is
chosen uniformly at random from #, it suffices to count the number of pairs (u, v),
0 <u,v < p—1, for whichu # v but « = vmodn. For each choice of u there are

323

PAIRWISE INDEPENDENCE AND UNIVERSAL HASH FUNCTIONS

at most [p/n] — 1 possible appropriate values for v, giving at most p([p/n] — 1) <
p(p — 1)/n pairs. Each pair corresponds to one of p(p — 1) hash functions, so

p—1 1
Pr(hu.b(-xl) = ha,b(x2)) < p(p ')‘/n" = -,
p(p—1) n

proving that H is 2-universal. |

13.3.2. Example: A Strongly 2-Universal Family of Hash Functions

We can apply ideas similar to those used to construct the 2-universal family of hash
functions in Lemma 13.6 to construct strongly 2-universal families of hash functions.
To start, suppose that both our universe U and the range V of the hash function are
{0,1,2,..., p — 1} for some prime p. Now let

hap(x) = (ax + b) mod p,
and consider the family

H="{hep|0=<ab=<p-—1}

Notice that here a can take on the value 0, in contrast with the family of hash functions
used in Lemma 13.6.

Lemma 13.7: H is strongly 2-universal.

Proof: This is entirely similar to the proof of Lemma 13.2. For any two elements x,
and x; in U and any two values y; and y; in V, we need to show that

|
Pr((hu.[)(xl) = .)"1) N (ha.b(xZ) = yz)) e ?

The condition that both &, ,(x;) = v, and h, ,(x2) = y; yields two equations mod-
ulo p with two unknowns, the values for @ and b: ax; +b = y, mod p and ax; + b =
vamod p. This system of two equations and two unknowns has just one solution:

V2=V

a= mod p,

X2 — X

b=y, — ax;mod p.

Hence only one choice of the pair (a, b) out of the p? possibilities results in x; and x»
hashing to y; and y,, proving that

Pr(.(ha,b(xl) = _V]) N (hu.h(-xZ) = ,Vz)) = ?9
as required. -

Although this gives a strongly 2-universal hash family, the restriction that the universe
U and the range V be the same makes the result almost useless; usually we want to
hash a large universe into a much smaller range. We can extend the construction in a
natural way that allows much larger universes. Let V = {0,1,2,..., p — 1}, but now

324

13.3 FAMILIES OF UNIVERSAL HASH FUNCTIONS

let U ={0,1,2,..., p" — 1} for some integer k and prime p. We can interpret an ele-
ment « in the universe U as a vector it = (ug. uy. up_1), where 0 < u; < p — 1 for
0 <i < k —1and where Z,I:(]) u;p' = u. In fact, this gives a one-to-one mapping
between vectors of this form and elements of U.

For any vector a = (ag,ay,...,ar_) with0 < a; < p—1,0 <i <k — 1. and for
any value b withO < b < p — 1, let

kol
ha.p(u) = (Z aju; + b) mod p,
=0
and consider the family

H={hsp|0<a;,b<p—1tforallO<i <k—1}.
Lemma 13.8: H is strongly 2-universal.

Proof: We follow the proof of Lemma 13.7. For any two elements «; and u, with cor-
responding vectors u; = (u; o, U; 1, -..,u; 1) and for any two values y, and y, in V,
we need to show that

_ 1
Pr((ha p(u) = y) O (hapuz) = y2)) = —.
p
Since u;, and u, are different, they must differ in at least one coordinate. Without
loss of generality let u; o # u2 . For any given values of ay, a1, ..., a;_, the condition

that /5 5(1y) = vy and hz »(uy) = v, is equivalent to:

k-1

aoplyo+ b= (_\’1 — E (ljll]j) mod p
Jj=1
k=1

aplts o+ b= ()’1 — Zajuz,j) mod p.

Jj=1

For any given values of «ay.a>,...,a;_), this gives a system with two equations and
two unknowns (namely. a and b), which — as in Lemma 13.8 — has exactly one solu-
tion. Hence, forevery a,.ds. ..., a,—. only one choice of the pair (a. b) out of the /73
possibilities results in «; and > hashing to y; and y,. proving that

PI'((/I;,_;,(I{]) = _\~]) M (11(7./)(112) = _\:’)) = 3.

as required. |

Although we have described both the 2-universal and the strongly 2-universal hash fam-
ilies in terms of arithmetic modulo a prime number, we could extend these techniques
to work over general finite fields — in particular, fields with 2" elements represented
by sequences of n bits. The extension requires knowledge of finite fields, so we just
sketch the result here. The setup and proot are exactly the same as for Lemma 13.8 ex-
cept that, instead of working modulo p. we perform all arithmetic in a fixed finite field

325

PAIRWISE INDEPENDENCE AND UNIVERSAL HASH FUNCTIONS

with 2" elements. We assume a fixed one-to-one mapping f from strings of n bits,
which can also be thought of as numbers in {0, 1,...,2" — 1}, to field elements. We let

k=1
op) = f"(Z fla) - flu) + f(’”>’
i=0
where the a; and b are chosen independently and uniformly over {0, 1,...,2" — 1} and
where the addition and multiplication are performed over the field. This gives a strongly
2-universal hash function with a range of size 2".

13.3.3. Application: Perfect Hashing

Perfect hashing is an efficient data structure for storing a static dictionary. In a static
dictionary, items are permanently stored in a table. Once the items are stored, the table
is used only for search operations: a search for an item gives the location of the item
in the table or returns that the item is not in the table.

Suppose that a set S of m items is hashed into a table of n bins, using a hash func-
tion from a 2-universal family and chain hashing. In chain hashing (see Section 5.5.1),
items hashed to the same bin are kept in a linked list. The number of operations for
looking up an item x is proportional to the number of items in x’s bin. We have the
following simple bound.

Lemma 13.9: Assume that m elements are hashed into an n-bin chain hashing table
by using a hash function h chosen uniformly at random from a 2-universal family. For
an arbitrary element x, let X be the number of items at the bin h(x). Then

E[X] m/n it x &8,
<
T+ (m =1/ if x€S.

Proof: Let X; = | if the ith element of S (under some arbitrary ordering) is in the
same bin as x and 0 otherwise. Because the hash function is chosen from a 2-universal
family, it follows that

Pr(X; =1)=1/n.

Then the first result follows from

m m

m
E[X] = E[Z X,} = ;E[X,-] < —,

il
where we have used the universality of the hash function to conclude that E[X;] <
1/n. Similarly, if x is an element of S then (without loss of generality) let it be the first
element of S. Hence X, = 1, and again

Pr(X, =1)=1/n
when i # 1. Therefore,

E[X]:E[ZX,}=l+ZE[X,~]§l+m_l. m

=1 =2 n

326

13.3 FAMILIES OF UNIVERSAL HASH FUNCTIONS

Lemma 13.9 shows that the average performance of hashing when using a hash func-
tion from a 2-universal family is good. since the time to look through a bin of any
item is bounded by a small number. For instance. it m1 = n then. when searching the
hash table for x, the expected number of items other than x that must be examined is
at most I. However, this does not give us a bound on the worst-case time of a lookup.
Some bin may contain /n elements or more, and a search for one of these elements
requires a much longer lookup time.

This motivates the idea of perfect hashing. Given a set S. we would like to construct
a hash table that gives excellent worst-case pertormance. Specifically. by perfect hash-
ing we mean that only a constant number ot operations are required to find an item in
a hash table (or to determine that it isn’t there).

We first show that perfect hashing is easv it we are given sufficient space for the
hash table and a suitable 2-universal familyv ot hash functions.

Lemma 13.10: [f h € H is chosen uniformly at random from a 2-universal family of
hash functions mapping the universe Uto [0.n — 1] then, for any set S C U of size m,
the probability of h being perfect is at least 1,2 when n > m?>.

Proof: Let s,55...... s,, be the m items of §. Let X;; be 1 if the h(s;) = h(s;) and
0 otherwise. Let X = Z]i_,;m X,;. Then. as we saw in Eqn. (13.1), the expected
number of collisions when using a 2-universal hash function is
ElX|=E| Y X 3 E[X]<(m1 m’
= X, | = il = - << —.
l<i<1<m) I<i<j<m ! 2 n 211
Markov’s inequality then vields
m- |
Pr(X > —) <Pr(X > 2E[X]) < 3
n

Hence, when i > m=. we tind X < | with probability at least 1/2. This implies that a
randomly chosen hash function is pertect with probability at least 1/2. |

To find a perfect hash function when n > m-, we may simply try hash functions chosen
uniformly at random from the 2-universal family until we find one with no collisions.
This gives a Las Vegas algorithm. On average we need to try at most two hash functions.

We would like to have perfect hashing without requiring space for (m?) bins to
store the set of m items. We can use a two-level scheme that accomplishes perfect
hashing using only O(m) bins. First. we hash the set into a hash table with m bins us-
ing a hash function from a 2-universal family. Some of these bins will have collisions.
For each such bin, we provide a second hash function from an appropriate 2-universal
family and an entirely separate second hash table. If the bin has & > [items in it then
we use k° bins in the secondary hash table. We have already shown in Lemma 13.10
that with k* bins we can find a hash function from a 2-universal family that will give
no collisions. It remains to show that, by carefully choosing the first hash function, we
can guarantee that the total space used by the algorithm is only O(m).

327

PAIRWISE INDEPENDENCE AND UNIVERSAL HASH FUNCTIONS

Theorem 13.11: The two-level approach gives a perfect hashing scheme for m items
using O(m) bins.

Proof: As we showed in Lemma 13.10, the number of collisions X in the first stage
satisfies

Pr(X > ﬁ) < Pr(X > 2E[X]) <

n

DN —

When n = m, this implies that the probability of having more than m collisions is at
most 1/2. Using the probabilistic method, there exists a choice of hash function from
the 2-universal family in the first stage that gives at most m collisions. In fact, such
a hash function can be found efficiently by trying hash functions chosen uniformly
at random from the 2-universal family, giving a Las Vegas algorithm. We may there-
fore assume that we have found a hash function for the first stage that gives at most m
collisions.

Let ¢; be the number of items in the ith bin. Then there are () collisions between

items in the ith bin, so
124 N
(%)
m.
5] =

i=1 N7

For each bin with ¢; > 1 items, we find a second hash function that gives no collisions
using space ¢;. Again, for each bin, this hash function can be found using a Las Vegas
algorithm. The total number of bins used is then bounded above by

m m m

m+z:(.‘,.2 §m+2Z(C;) +Z(‘,~ <m-+2m+m=4m.

=1 i=1 i=1

Hence, the total number of bins used is only O(m). |

13.4. Application: Finding Heavy Hitters in Data Streams

A router forwards packets through a network. At the end of the day, a natural ques-
tion for a network administrator to ask is whether the number of bytes traveling from
a source s to a destination d that have passed through the router is larger than a prede-
termined threshold value. We call such a source—destination pair a heavy hitter.
When designing an algorithm for finding heavy hitters, we must keep in mind the
restrictions of the router. Routers have very little memory and so cannot keep a count
for each possible pair s and d, since there are simply too many such pairs. Also, routers
must forward packets quickly, so the router must perform only a small number of com-
putational operations for each packet. We present a randomized data structure that is
appropriate even with these limitations. The data structure requires a threshold g; all
source—destination pairs that are responsible for at least ¢ total bytes are considered
heavy hitters. Usually ¢ is some fixed percentage, such as 1%, of the total expected
daily traffic. At the end of the day, the data structure gives a list of possible heavy hit-
ters. All true heavy hitters (responsible for at least g bytes) are listed, but some other

328

13.4 APPLICATION: FINDING HEAVY HITTERS IN DATA STREAMS

pairs may also appear in the list. Two other input constants. € and 4. are used to control
what extraneous pairs might be put in the list of heavy hitters. Suppose that Q repre-
sents the total number of bytes over the course of the day. Our data structure has the
guarantee that any source—destination pair that constitutes less than ¢ — £Q bytes of
traffic is listed with probability at most . In other words, all heavy hitters are listed;
all pairs that are sufficiently far from being a heavy hitter are listed with probability at
most §; pairs that are close to heavy hitters may or may not be listed.

This router example is typical of many situations where one wants to keep a suc-
cinct summary of a large data stream. In most dara stream models, large amounts of
data arrive sequentially in small blocks. and each block must be processed before the
next block arrives. In the setting of network routers. each block is generally a packet.
The amount of data being handled is often so large and the time between arrivals is S0
small that algorithms and data structures that use only a small amount of memory and
computation per block are required.

We can use a variation of a Bloom filter. discussed in Section 5.5.3, to solve this
problem. Unlike our solution there. which assumed the availability of completely ran-
dom hash functions, here we obtain strong. provable bounds using only a family of
2-universal hash functions. This is important. because efficiency in the router setting
demands the use of only very simple hash tunctions that are easy to compute, yet at the
same time we want provable performance guarantees.

We refer to our data structure as a count-niin filter. The count-min filter processes
a sequential stream of pairs X,. X-.... of the form X, = (i,.¢,). where i, is an item
and ¢, > 0 is an integer count increment. In our routing setting, {, would be the pair
of source—destination addresses ot a packet and ¢, would be the number of bytes in the

packet. Let
Count(i.7T) = Z Cr.

rae=r <y <T

That is, Count(i. T) is the total count associated with an item 7 up to time 7. In the
routing setting. Count(i. 7') would be the total number of bytes associated with packets
with an address pair i up to time 7. The count-min filter keeps a running approxima-
tion of Count(i. T) tor all items i and all times 7" in such a way that it can track heavy
hitters.

A count-min filter consist of m counters. We assume henceforth that our counters
have sufficiently many bits that we do not need to worry about overflow: in many prac-
tical situations, 32-bit counters will suffice and are convenient for implementation. A
count-min filter uses & hash functions. We split the counters into A disjoint groups
G.GH,...,G; of size m/k. For convenience. we assume in what tollows that & di-
vides m evenly. We label the counters by C,, ;. where] < a <kand0 < j < m/k — 1.
so that C,, ; corresponds to the jth counter in the ath group. That is. we can think of
our counters as being organized in a 2-dimensional array. with 1,k counters per row
and £ columns. Our hash functions should map items from the universe into counters,
so we have hash tunctions H, tor] < a < k. where H,: U — [O.m/k — 1]. That is,
each of the k hash functions takes an item from the universe and maps it into a num-
ber [0.m/k — 1]. Equivalently. we can think ot each hash tunction as taking an item

329

PAIRWISE INDEPENDENCE AND UNIVERSAL HASH FUNCTIONS

i and mapping it to the counter C,_ p, ;). The H, should be chosen independently and
uniformly at random from a 2-universal hash family.

We use our counters to keep track of an approximation of Count(i, 7). Initially, all
the counters are set to (. To process a pair (i,,c,), we compute H,(i,) for each a with
I <a <k and increment C,_p,(;,, by ¢;. Let C, ;(T) be the value of the counter C, ;
after processing X through Xr. We claim that, for any item, the smallest counter as-
sociated with that item is an upper bound on its count, and with bounded probability
the smallest counter associated with that item is off by no more than ¢ times the to-
tal count of all the pairs (i,,c,) processed up to that point. Specifically, we have the
following theorem.

Theorem 13.12: Forany i in the universe U and for any sequence (iy,cy), ..., (it ,cT),

min C.. j(T) > Count(i,T).
J=H, (). 1<a<k '

Furthermore, with probability 1 — (k/me)* over the choice of hash functions,
-
min C, {(T) < Count(i.T) + &) c,.

j=Hq().1<a<k
) t=1

Proof: The first bound,
min C, i(T)> Count(i, T),
J=H, () 1<u<k ’
is trivial. Each counter C, ; with j = H, (i) is incremented by ¢, when the pair (i, ¢,) is
seen in the stream. It follows that the value of each such counter is at least Count (7, T')
at any time 7.

For the second bound, consider any specific i and 7. We first consider the specific
counter C_p,;, and then use symmetry. We know that the value of this counter is at
least Count(7. 7') after the first T pairs. Let the random variable Z, be the amount the
counter is incremented owing to items other than i. Let X, be a random variable that is
lifi, # i and H,(i,) = H,(i): X, is 0 otherwise. Then

T
Zi= Y 0= Xe.

r<t1<T., #i =1
Hi(i)y=H\ (i)

Because H, is chosen from a 2-universal family, for any i, # i we have

, . k
Pr(H(i,) = H\(i)) < ~
and hence

It follows that

134 APPLICATION: FINDING HEAVY HITTERS IN DATA STREAMS

By Markov’s inequality,
T

k k
Pr(Zl > 82(‘,) < ﬂ = —. (13.2)

— € me
Let Z,, Z3,.... Z; be corresponding random variables for each of the other hash func-
tions. By symmetry, all of the Z; satisfy the probabilistic bound of Eqn. (13.2). More-
over, the Z; are independent, since the hash functions are chosen independently from
the family of hash functions. Hence

T

. x T
Pr(rjnzl? Z;>¢ c,) = l—[Pr(Z,- > ¢ Zc,) (13.3)

=1 j=1 =1

1\’ k
< (E) (13.4)
[

Itis easy to check using calculus that (k /me)* is minimized when k& = me/e. in which

case
L k
() — e c.
ne

Of course, k£ needs to be chosen so that A and . k are integers. but this does not sub-
stantially affect the probability bounds.

We can use a count-min filter to track heavy hitters in the routing setting as follows.
When a pair (i7,cy) arrives. we update the count-min filter. If the minimum hash
value associated with iy is at least the threshold ¢ for heavy hitters, then we put the
item into a list of potential heavy hitters. We do not concern ourselves with the details
of performing operations on this list. but note that it can be organized to allow updates
and searches in time logarithmic in its size by using standard balanced search-tree data
structures; alternatively. it could be organized in a large array or a hash table.

Recall that we use Q to represent the total traffic at the end of the day.

Corollary 13.13: Suppose that we use a count-min filter with k = (ln H hash func-
tions, m = (ln H .]—ﬂ counters, and a threshold q. Then all heavy hitters are put on
the list, and any source—destination puir that corresponds to fewer than g — €Q bytes

is put on the list with probability at most §.

Proof: Since counts increase over time, we can simply consider the situation at the end
of the day. By Theorem 13.12. the count-min filter will ensure that all true heavy hitters
are put on the list, since the smallest counter value for a true heavy hitter will be at least
q. Further, by Theorem 13.12, the smallest counter value for any source—destination
pair that corresponds to fewer than g — €Q bytes reaches ¢ with probability at most

k k
L) <o) _ g [}
me o

331

PAIRWISE INDEPENDENCE AND UNIVERSAL HASH FUNCTIONS

[\

Figure 13.1: An item comes in, and 3 is to be added to the count. The initial state is on the left; the
shaded counters need to be updated. Using conservative update, the minimum counter value 4 deter-
mines that all corresponding counters need to be pushed up to at least 4 + 3 = 7, The resulting state
after the update is shown on the right.

The count-min filter is very efficient in terms of using only limited randomness in its
hash functions, only O(<1n) counters, and only O(In) computations to process
each item. (Additional computation and space might be required to handle the list of
potential heavy hitters, depending on its representation.)

Before ending our discussion of the count-min filter, we describe a simple improve-
ment known as conservative update that often works well in practice, although it is
difficult to analyze. When a pair (i,, ¢,) arrives, our original count-min filter adds ¢, to

each counter C,_; that the item 7 hashes to, thereby guaranteeing that

min C..j(T) > Count(i,T)
J=H, (. 1<a<k
holds for all 7 and 7. In fact, this can often be guaranteed without adding ¢, to each
counter. Consider the state after the (+ — 1)th pair has been processed. Suppose that,
inductively, up to that point we have. for all 7,

min C. (t = 1) > Count(i,t —1).
J=H, (O 1<u<k :

Then, when (i,.c¢,) arrives. we need to ensure that
C(l.j(t) > COUH[([-,,I)
for all counters, where j = H,(i;).a <1 < k. But

Count(i;, 1) = Count(iy,t =D +¢, = min_— Cy (1 =1+,
j=Halip.1<ash

Hence we can look at the minimum counter value v obtained from the & counters that
i, hashes to, add ¢, to that value, and increase to v + ¢, any counter that is smaller than
v + ¢,. An example is given in Figure 13.1. An item arrives with a count of 3; at the
time of arrival, the smallest counter associated with the item has value 4. It follows that
the count for this item is at most 7, so we can update all associated counters to ensure
they are all at least 7. In general, if all the counters i, hashes to are equal, conservative
update is equivalent to just adding ¢, to each counter. When the i, are not all equal, the
conservative update improvement adds less to some of the counters, which will tend to
reduce the errors that the filter produces.

332

